SHRI RAMSWARDOD MEMORIAL UNIVERSITY

End Semester Examination (2021-22)-Odd Semester

M.Sc. (Chemistry) – I Year (I Sem)													
Course Name: Elementary I	Mathe	matics	,							Code	e: MI	MA1	007
Time: 02 Hours									•	Max	к Ма	rks:	60
University Roll No.													

University Roll No.											
					(1	lo be	fille	ed by	the	Stud	ent)

Note: Please read instructions carefully:

- a) The question paper has 03 sections and it is compulsory to attempt all sections.
- b) All questions of Section A are compulsory; questions in Section B and C contain choice.

	cion A: Very Short Answer type Questions empt all the questions.	BL	CLO	Marks (10)
1.	Solve for x : $\frac{x-2}{x-1} = \frac{x+4}{2x+2}$.	BL3	CLO1	02
2.	Find $\lim_{x\to 2} \left(\frac{x-2}{x^2-5x+6} \right)$	BL1	CLO2	02
3.	Write the order & degree of following differential equation, $\frac{d^3y}{dx^3} = \left(1 + \left(\frac{dy}{dx}\right)^2\right)^{\frac{5}{2}}$	BL1	CLO3	02
4.	Solve $\int (x^3 - 4x^2 + 3\log x) dx$	BL3	CLO2	02
5.	If $u = x^2 + 2xy - y^2$ calculate the value of $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$.	BL3	CLO4	02
Section B: Short Answer Type Questions Attempt any 03 out of 05 questions.			CLO	Marks (30)
1.	Calculate the highest integral value of 'k' for which the quadratic equation x^2 - $6x + k = 0$ have two real and equal roots?	BL3	CLO1	10
2.	If $y = \log \sin(e^x + 5x + 8)$, calculate $\frac{dy}{dx}$.	BL3	CLO2	10
3.	If $e^x + e^y = e^{x+y}$, prove that $\frac{dy}{dx} = -e^{y-x}$.	BL5	CLO3	10
4.	Construct a partial differential equation by eliminating the arbitrary functions f and g from the equation $y = f(x-it) + g(x+it)$.	BL3	CLO3	10
5.	Calculate $\int x \sin x dx$	BL3	CLO4	10

Section C: Long Answer Type Questions Attempt any 01 out of 04 questions.			CLO	Marks (20)
1.	If α and β are the roots of the equation $ax^2 + bx + c = 0$, calculate the	BL3	CLO1	20
	value of			
	(a) $\alpha^2 - \beta^2$ (b) $\alpha^2 + \beta^2$ (c) $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$ (d) $\left(\frac{\alpha}{\beta} - \frac{\beta}{\alpha}\right)^2$			
2.	$\int 3ax + b, for \ x > 1$	BL3	CLO2	20
	If the function $f(x) = \begin{cases} 11, & \text{for } x = 1 \\ 5ax - 2b, & \text{for } x < 1 \end{cases}$			
	5ax - 2b, for $x < 1$			
	is continuous at $x = 1$, calculate the values of a and b .			
3.	If $\frac{dy}{dx} + 2y \tan x = \sin x$ and $y = 0$ for $x = \frac{\pi}{3}$, prove that maximum value	BL5	CLO4	20
	of y is $\frac{1}{8}$.			
4.	Solve $(x^2 - yz)p + (y^2 - zx)q = (z^2 - xy)$, where $p = \frac{\partial z}{\partial x}$ and $q = \frac{\partial z}{\partial y}$.	BL3	CLO3	20
